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Who am [ ?

Some research interests:

< Type systems and computational models

o Theorem proving and automated reasoning

© Proof theory H N B
i M - Kexc= L[ F,Kx].

RER lucs,

o Computational mathematics
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Well-Founded Proofs

(Axiom)

(Axiom) (Axiom)

(Inference)

Our Goal

Soundness: If the axioms are sound and every inference rule is sound,

then every proof is sound.
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Non-Well-Founded Proofs

(Axiom)
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A cyclic pre-proof is a derivation tree with a backlink

from each open leaf (“bud”) to an identical “companion”.



Cyclic Proof?
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Is this a valid pre-proof?



Cyclic Proof?

=>0=1

(wkR)
=>(0=1, 0=1

(entR)
=>0=1

Is this a valid pre-proof?

The cycle does not make any “progress”

How can we rule out such pre-proofs?
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Infinite Descent

“Decause the ovdinary methods now i the books weve insufficient for

dewmonstrating Such difficult propositions, | §inally found 3 totally unique
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Theorem: 4/ 2 is not rational

Proof: Suppose for contradiction that\/_ = for x,y € N. Then, x? = 2y2.
Y

2y — X
Consequently x(x — y) = y(2y — x), so that: =— = \/_
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Theorem: 4/ 2 is not rational

Proof: Suppose for contradiction that\/_ = for x,y € N. Then, x? = 2y2.
Y

Dy —
Consequently x(x — y) = y(2y — x), so that: =— = \/_
X = y
Define: X' = 2y — xand y’ = x — y. Then, \/_ = —,.
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Theorem: 4/ 2 is not rational

Proof: Suppose for contradiction that\/_ = for x,y € N. Then, x? = 2y2.
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Define: X' = 2y — xand y’ = x — y. Then, \/_ = —,.
y

Sincey<\/§y=x<2y,andso()<x—y=y’<y.
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In§inite descent
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But then we have x’, y" € N such that \/_ = — and y < y.
Y
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Soundness Criteria

(Axiom)
[ ]

< We trace syntactic elements t (terms/formulas)
through judgements

< At certain points, there is a notion of ‘progression’
< Each infinite path must admit some infinite descent

< The Infinite Descent condition is an w-regular property
(i.e decidable)



Soundness Criteria

(Axiom)

A cyclic proof = )

I

> A Pre-proof |

+ ;’

(Inference) Soundness conditiown ‘

7:2 (e\/er\j nfinite Path has an m‘hvnte\\j ' j

: Progressing tvace 3dlong Sowe t3il) : |
T i .

< We trace syntactic elements T terms/formulas)
through judgements

< At certain points, there is a notion of ‘progression’

< Each infinite path must admit some infinite descent

< The Infinite Descent condition is an w-regular property
(i.e decidable)



Proof Example

Consider these inductive definitions These definitions generate
of predicates N, E, O: case-split rules, e.g., for N:
= NO = EQ
N N Ex = Osx [t=0=> A F,t=sx,.;‘~A
X = INSX
[Nt = A
Ox = Esx
Ne+Ox,Ex -~~~ ~~==---~ .
Subst) \
Ny F Oy, By |
(0) .
Ny F Oy, Osy !
(E) (E) .
= E0, 00 Ny F Esy,Osy !
x=OFE%0x-— xzsmNyFE@Ox-— !
(Case N) -
Nzt Ex,Ox ¢-~---=--==-=-==-==-=--~

(V)
Nz + Ex V Oz



Some Logies with Cyclic Proof Systems

< u-calculus (modal, first-order)

< Temporal logic (CTL, LTL,. . . )

< First-order logic with ind. definitions

< Transitive closure logic

< Separation logic with ind. definitions

“ Hoare logic and variants (e.g. termination)

< Linear logic with fixed points )
contraviwise

< Modal logic (of certain kinds) § T was S0, Tt ight be

</ K[eene a[gebras _ av\d T‘\: 1t wevre SO' 1t WOM\C\ be‘,
o but as it 1sw't, it din't,

<~ Combinations of the above--- That's logic!”

-Tweedledee (Lewis cavvoll)



Open Questions



Can we prove more?

< In general, cyclic systems subsume explicit system

o But are they really stronger?

o Does the translation between the two forms
preserves important patterns (e.g. modularity)?



Can we prove better?

< Elegance
< Automation/proof search
< Separating termination from correctness

< Inductive invariants



Can we check [nfinite Descent efficiently?

< Checking Infinite Descent is PSPACE-complete

< There are two classes of algorithms in the literature:

< Automata-theoretic: Checks inclusion between w-automata
recognizing paths

< Ramsey-theoretic (relation-based): Compute compositions of
sloped relations along all finite paths

Algorithm Time Complexity Upper Bound
. VLA O(n5 Cw?l .- 92nw log(an))
Automata-theoretic { ;
SLA O(n2 — min(n4, 32w ) ) 22w log(2w))
FWK O(n-w*-33%° 4 nd.p.32v%)

Ramsey-theoretic {
OR O(n3 - wh - 32°)




Can we check [nfinite Descent efficiently,

The tool

if we forgo completeness?

YES!

implements a serial pipeline of

sound heuristics, defaulting to a complete method

Runtime (microseconds)

= = =
o o o
= (9] (o]
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Average runtime of methods,
aggregated by #edges

Overhead %
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1 = --——- SLA
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~--== OR

.............
...............
’’’’’’’’’’’’’’’’’

0 20

60 80 100 120
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Average % overhead of complete

methods compared to CYCLONE,
aggregated by #edges

40




Can we get more automated support?

< Provers (automated/semi-automated) currently offer
little or no support for cyclic reasoning

< exceptions: Cyclist

< Major verification efforts are missing the great
potential of cyclic reasoning for lighter, more legible
and more automated proofs.

“Proving theorems is not for the
wathematicians anymove: with
theovem Pprovers it's now 3 job for
the hacker.”

— Mavrtin Rinard
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Resgearchis Non-Well-Founded

Eventually, we publish a
paper claiming we knew it
all along.

Souwnds Familiavr?

<~ We loop back to earlier ideas

< Definitions evolve
< Proof strategies change

< (@Goals shift
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The Key is to Find your Infinite Descent!

<~ We ensure progress through infinite descent.

<~ Whenever we cycle we need to make sure we have:

< Sharpened intuitions
< Cleaner formalisms
< A better counterexample

<~ Better questions

o Remember: Non-well-founded

doesn’t mean unsound

o The Problem: infinite descent

IS a property
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Find mentors

Find friends Find something well-founded!
Find collaborators

Consult/ask for help i

People like to give advice™* @
Present your work wherever you can NOW ACCEPTING

Be a good citizen
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